# CLASS-7ASSOCIATIVE PROPERTY OF MULTIPLICATION OF RATIONAL NUMBER

﻿﻿ASSOCIATIVE PROPERTY OF MULTIPLICATION OF RATIONAL NUMBER﻿ -

The associative property of multiplication states that when three or more rational numbers are multiplied, the grouping of the numbers does not affect the product. In other words, for any three rational numbers a/b, c/d, and e/f the following equation holds:-

a          c         e         a         c          e

(----- X -----) X ----- = ----- X (----- X -----)

b          d         f         b         d          f

Explanation:-

Let's consider three rational numbers a/b, c/d, and e/f, where a,b,c,d,e,and f are integers and b ≠ 0, d ≠ 0, f ≠ 0.

1. Group Factors Differently:- When you multiply three numbers, you can group the first two numbers together and multiply them first, or you can group the last two numbers together and multiply them first.
2. Same Result:- No matter how you group the numbers, the product will be the same.

When we group a/b, c/d -

a           c           (a X c)

------- X ------- = ----------

b           d           (b X d)

e

​ Now, we will multiply the result by ------, we get:

f

(a X c)         e        (a X c X e)

L.H.S = ---------- X ----- = ------------

(b X d)         f        (b X d X f)

c           e                                   a

When we group -----​ and ----- first and then multiply by ----- we get-

d           f                                   b

c           e          (c X e)

R.H.S = ------ X ------- = ----------

d           f          (d X f)

a

​ Now, we will multiply the result by ------​, we get:

b

a          (c X e)          (a X cX e)

------ X ---------- = -------------

b          (d X f)          (b X d x f)

Since both expressions yield the same result, the associative property is verified.

L.H.S = R. H.S

a          c         e         a         c          e

(----- X -----) X ----- = ----- X (----- X -----)

b          d         f         b         d          f

Example.1) Example with Positive Rational Numbers:-

Let's take three rational numbers,

2         4             3

------, ------, and ------

3         5             7

Ans.)    We need to prove -

2          4           3          2           4          3

(------ X ------) X ------ = ------ X (------ X ------)

3          5           7          3           5          7

2           4           3         (2 X 4)          3

L.H.S = (------ X ------) X ------ = ---------- X ------

3           5           7         (3 X 5)          7

8          3          24

= ------ X ------ = -------

15         7          105

2           4          3

R.H.S = ------ X (------ X ------)

3           5          7

2          (4 X 3)         2         12

= ------ X ---------- = ------ X ------

3          (5 X 7)          3         35

24

= -------

105

So, it is proven -

2          4           3          2           4          3           24

(------ X ------) X ------ = ------ X (------ X ------) = -------

3          5           7          3           5          7          105

L.H.S = R.H.S

Example.2) Example with Negative Rational Numbers:

Consider the rational numbers -

- 2         3             1

------, ------, and ------

5         7           - 3

Ans.)    We need to prove -

- 2          3           1        - 2          3           1

(------ X ------) X ------ = ------ X (------ X ------)

5          7         - 3          5           7        - 3

- 2           3           1

L.H.S (------ X ------) X -------

5           7         - 3

{(- 2) X 3          1

= ------------ X -------

5 X 7          - 3

- 6           1         - 6          2

= ------- X ------ = ------- = ------

35        - 3       - 105         35

- 2          3           1

R.H.S = ------ X (------ X ------)

5           7        - 3

- 2           (3 X 1)

= ------ X ------------

5          {7 X (- 3)}

- 2          1          - 2           2

= ------ X ------ = -------- = -------

5        - 7         - 35          35

So, it is proven -

- 2          3           1        - 2          3           1          2

(------ X ------) X ------ = ------ X (------ X ------) = ------

5          7         - 3          5           7        - 3          35

L.H.S = R.H.S

The associative property of multiplication for rational numbers ensures that the way we group numbers when multiplying them does not affect the product. This property is fundamental in simplifying and solving mathematical problems involving rational numbers.