# CLASS-6RECIPROCAL OF MULTIPLICATION OF INVERSE

RECIPROCAL OR MULTIPLICATION OF INVERSE -

If the product of the two fractions is 1, each fraction is called a reciprocal of each other.

X                    Y

When, -------  x  -------

Y             X

1

= ------- =  1

1

X               Y

So, the reciprocal of  --------  is   --------  and vice versa

Y                X

On the other wards,  X / Y  and  Y / X are multiplicative inverses of each other.

The reciprocal of a fraction is obtained by interchanging the numerator and the denominator of the fraction. In other words, if you have a fraction "a/b," its reciprocal is "b/a." The reciprocal of a number is also known as its multiplicative inverse, meaning that when you multiply a number by its reciprocal, the result is 1.

For example, the reciprocal of the fraction 3/4 is 4/3. Similarly, the reciprocal of 5/6 is 6/5, and so on.

For example:

• The reciprocal of 2/3 is 3/2.
• The reciprocal of 5/8 is 8/5.
• The reciprocal of 1/4 is 4/1 (which is just 4).

Reciprocals are useful in various mathematical operations, such as dividing fractions or simplifying expressions.

1                9

Example-   1)    Reciprocal of  -------   is   --------  = 9

9                1

15                1

2)    Reciprocal of  15 --------   is   --------

1                15

15                  7

3)    Reciprocal of     --------   is    ---------

7                  15

37                   121

4)   Reciprocal of   ---------    is    ----------

121                   37

147                   22

5)   Reciprocal of  ----------   is    ---------

22                  147